Publications

2023
Chantranupong L, Beron CC, Zimmer JA, et al. Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature. 2023.Abstract
Striatal dopamine (DA) and acetylcholine (Ach) are essential for the selection and reinforcement of motor actions and decision-making1. In vitro studies have revealed an intrastriatal circuit in which Ach, released by cholinergic interneurons (CINs), drives DA release, and DA in turn inhibits CIN activity via dopamine D2 receptors (D2R). Whether and how this circuit contributes to striatal function in vivo is largely unknown. To define the role of this circuit in vivo, we monitored Ach and DA signals in the ventrolateral striatum of mice performing a reward-based decision-making task. We establish that DA and Ach exhibit multiphasic and anticorrelated transients that are modulated by decision history and reward outcome. DA dynamics and reward encoding do not require Ach release by CINs. However, DA inhibits Ach transients in a D2R-dependent manner and loss of this regulation impairs decision-making. To determine how other striatal inputs shape Ach signals, we assessed the contribution of cortical and thalamic projections and found that glutamate release from both sources is required for Ach release. Altogether, we uncover a dynamic relationship between DA and Ach during decision-making and reveal multiple modes of CIN regulation. These findings deepen our understanding of the neurochemical basis of decision-making and behavior.
Wolfson RL, Abdelaziz A, Rankin G, et al. DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon. Cell. 2023;186 (16) :3368-3385.e18.Abstract
The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.
Greene JJ, Gorelik P, Mazor O, et al. Freeing the animal model: a modular, wirelessly-powered, implantable electronic platform. Plast Reconstr Surg. 2023.Abstract
Fully implantable electronic devices in freely-roaming animal models are useful in biomedical research, but their development is prohibitively resource intensive for many laboratories. The advent of miniaturized microcontrollers with onboard wireless data exchange capabilities has enabled cost-efficient development of myriad do-it-yourself (DIY) electronic devices that are easily customizable with open-source software (https://www.arduino.cc/). Likewise, the global proliferation of mobile devices has led to the development of low-cost miniaturized wireless power technology. We present a low-cost, rechargeable, and fully-implantable electronic device comprising a commercially available, open-source, wirelessly-powered microcontroller that is readily customizable with myriad readily available miniature sensors and actuators. We demonstrate the utility of this platform for chronic nerve stimulation in the freely-roaming rat with intermittent wireless charging over 4 weeks. Device assembly was achieved within two hours and necessitated only basic soldering equipment. Component costs totaled $115 per device. Wireless data transfer and wireless re-charging of device batteries was achieved within 30 minutes, and no harmful heat generation occurred during charging or discharging cycles as measured by external thermography and internal device temperature monitoring. Wireless communication enabled triggered cathodic pulse stimulation of the facial nerve at various user-selected programmed frequencies (1, 5, and 10 Hz) for periods of four weeks or longer. This implantable electronic platform could be further miniaturized and expanded to study a vast array of biomedical research questions in live animal models.
Titos I, Juginović A, Vaccaro A, et al. A gut-secreted peptide suppresses arousability from sleep. Cell. 2023;186 (7) :1382-1397.e21.Abstract
Suppressing sensory arousal is critical for sleep, with deeper sleep requiring stronger sensory suppression. The mechanisms that enable sleeping animals to largely ignore their surroundings are not well understood. We show that the responsiveness of sleeping flies and mice to mechanical vibrations is better suppressed when the diet is protein rich. In flies, we describe a signaling pathway through which information about ingested proteins is conveyed from the gut to the brain to help suppress arousability. Higher protein concentration in the gut leads to increased activity of enteroendocrine cells that release the peptide CCHa1. CCHa1 signals to a small group of dopamine neurons in the brain to modulate their activity; the dopaminergic activity regulates the behavioral responsiveness of animals to vibrations. The CCHa1 pathway and dietary proteins do not influence responsiveness to all sensory inputs, showing that during sleep, different information streams can be gated through independent mechanisms.
2022
Fisher YE, Marquis M, D'Alessandro I, Wilson RI. Dopamine promotes head direction plasticity during orienting movements. Nature. 2022;612 (7939) :316-322.Abstract
In neural networks that store information in their connection weights, there is a tradeoff between sensitivity and stability1,2. Connections must be plastic to incorporate new information, but if they are too plastic, stored information can be corrupted. A potential solution is to allow plasticity only during epochs when task-specific information is rich, on the basis of a 'when-to-learn' signal3. We reasoned that dopamine provides a when-to-learn signal that allows the brain's spatial maps to update when new spatial information is available-that is, when an animal is moving. Here we show that the dopamine neurons innervating the Drosophila head direction network are specifically active when the fly turns to change its head direction. Moreover, their activity scales with moment-to-moment fluctuations in rotational speed. Pairing dopamine release with a visual cue persistently strengthens the cue's influence on head direction cells. Conversely, inhibiting these dopamine neurons decreases the influence of the cue. This mechanism should accelerate learning during moments when orienting movements are providing a rich stream of head direction information, allowing learning rates to be low at other times to protect stored information. Our results show how spatial learning in the brain can be compressed into discrete epochs in which high learning rates are matched to high rates of information intake.
Arlt C, Barroso-Luque R, Kira S, et al. Cognitive experience alters cortical involvement in goal-directed navigation. Elife. 2022;11.Abstract
Neural activity in the mammalian cortex has been studied extensively during decision tasks, and recent work aims to identify under what conditions cortex is actually necessary for these tasks. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same navigation decision task, revealing past learning as a critical determinant of whether cortex is necessary for goal-directed navigation. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multiarea calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron-neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in goal-directed navigation.
Kim S, Wallace ML, El-Rifai M, Knudsen AR, Sabatini BL. Co-packaging of opposing neurotransmitters in individual synaptic vesicles in the central nervous system. Neuron. 2022;110 (8) :1371-1384.e7.Abstract
Many mammalian neurons release multiple neurotransmitters to activate diverse classes of postsynaptic ionotropic receptors. Entopeduncular nucleus somatostatin (EP Sst+) projection neurons to the lateral habenula (LHb) release both glutamate and GABA, but it is unclear whether these are packaged into the same or segregated pools of synaptic vesicles. Here, we describe a method combining electrophysiology, spatially patterned optogenetics, and computational modeling designed to analyze the mechanism of glutamate/GABA co-release in mouse brain. We find that the properties of postsynaptic currents elicited in LHb neurons by optogenetically activating EP Sst+ terminals are only consistent with co-packaging of glutamate/GABA into individual vesicles. Furthermore, presynaptic neuromodulators that weaken EP Sst+ to LHb synapses maintain the co-packaging of glutamate/GABA while reducing vesicular release probability. Our approach is applicable to the study of multi-transmitter neurons throughout the brain, and our results constrain the mechanisms of neuromodulation and synaptic integration in LHb.
Pettit NL, Yap E-L, Greenberg ME, Harvey CD. Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature. 2022;609 (7926) :327-334.Abstract
In the hippocampus, spatial maps are formed by place cells while contextual memories are thought to be encoded as engrams1-6. Engrams are typically identified by expression of the immediate early gene Fos, but little is known about the neural activity patterns that drive, and are shaped by, Fos expression in behaving animals7-10. Thus, it is unclear whether Fos-expressing hippocampal neurons also encode spatial maps and whether Fos expression correlates with and affects specific features of the place code11. Here we measured the activity of CA1 neurons with calcium imaging while monitoring Fos induction in mice performing a hippocampus-dependent spatial learning task in virtual reality. We find that neurons with high Fos induction form ensembles of cells with highly correlated activity, exhibit reliable place fields that evenly tile the environment and have more stable tuning across days than nearby non-Fos-induced cells. Comparing neighbouring cells with and without Fos function using a sparse genetic loss-of-function approach, we find that neurons with disrupted Fos function have less reliable activity, decreased spatial selectivity and lower across-day stability. Our results demonstrate that Fos-induced cells contribute to hippocampal place codes by encoding accurate, stable and spatially uniform maps and that Fos itself has a causal role in shaping these place codes. Fos ensembles may therefore link two key aspects of hippocampal function: engrams for contextual memories and place codes that underlie cognitive maps.
Koveal D, Rosen PC, Meyer DJ, et al. A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nat Commun. 2022;13 (1) :2919.Abstract
Genetically encoded fluorescent biosensors are powerful tools used to track chemical processes in intact biological systems. However, the development and optimization of biosensors remains a challenging and labor-intensive process, primarily due to technical limitations of methods for screening candidate biosensors. Here we describe a screening modality that combines droplet microfluidics and automated fluorescence imaging to provide an order of magnitude increase in screening throughput. Moreover, unlike current techniques that are limited to screening for a single biosensor feature at a time (e.g. brightness), our method enables evaluation of multiple features (e.g. contrast, affinity, specificity) in parallel. Because biosensor features can covary, this capability is essential for rapid optimization. We use this system to generate a high-performance biosensor for lactate that can be used to quantify intracellular lactate concentrations. This biosensor, named LiLac, constitutes a significant advance in metabolite sensing and demonstrates the power of our screening approach.
Hashimoto M, Brito SI, Venner A, et al. Lateral septum modulates cortical state to tune responsivity to threat stimuli. Cell Rep. 2022;41 (4) :111521.Abstract
Sudden unexpected environmental changes capture attention and, when perceived as potentially dangerous, evoke defensive behavioral states. Perturbations of the lateral septum (LS) can produce extreme hyperdefensiveness even to innocuous stimuli, but how this structure influences stimulus-evoked defensive responses and threat perception remains unclear. Here, we show that Crhr2-expressing neurons in mouse LS exhibit phasic activation upon detection of threatening but not rewarding stimuli. Threat-stimulus-driven activity predicts the probability but not vigor or type of defensive behavior evoked. Although necessary for and sufficient to potentiate stimulus-triggered defensive responses, LSCrhr2 neurons do not promote specific behaviors. Rather, their stimulation elicits negative valence and physiological arousal. Moreover, LSCrhr2 activity tracks brain state fluctuations and drives cortical activation and rapid awakening in the absence of threat. Together, our findings suggest that LS directs bottom-up modulation of cortical function to evoke preparatory defensive internal states and selectively enhance responsivity to threat-related stimuli.
Beron CC, Neufeld SQ, Linderman SW, Sabatini BL. Mice exhibit stochastic and efficient action switching during probabilistic decision making. Proc Natl Acad Sci U S A. 2022;119 (15) :e2113961119.Abstract
In probabilistic and nonstationary environments, individuals must use internal and external cues to flexibly make decisions that lead to desirable outcomes. To gain insight into the process by which animals choose between actions, we trained mice in a task with time-varying reward probabilities. In our implementation of such a two-armed bandit task, thirsty mice use information about recent action and action–outcome histories to choose between two ports that deliver water probabilistically. Here we comprehensively modeled choice behavior in this task, including the trial-to-trial changes in port selection, i.e., action switching behavior. We find that mouse behavior is, at times, deterministic and, at others, apparently stochastic. The behavior deviates from that of a theoretically optimal agent performing Bayesian inference in a hidden Markov model (HMM). We formulate a set of models based on logistic regression, reinforcement learning, and sticky Bayesian inference that we demonstrate are mathematically equivalent and that accurately describe mouse behavior. The switching behavior of mice in the task is captured in each model by a stochastic action policy, a history-dependent representation of action value, and a tendency to repeat actions despite incoming evidence. The models parsimoniously capture behavior across different environmental conditionals by varying the stickiness parameter, and like the mice, they achieve nearly maximal reward rates. These results indicate that mouse behavior reaches near-maximal performance with reduced action switching and can be described by a set of equivalent models with a small number of relatively fixed parameters.
Tseng S-Y, Chettih SN, Arlt C, Barroso-Luque R, Harvey CD. Shared and specialized coding across posterior cortical areas for dynamic navigation decisions. Neuron. 2022;110 (15) :2484-2502.e16.Abstract
Animals adaptively integrate sensation, planning, and action to navigate toward goal locations in ever-changing environments, but the functional organization of cortex supporting these processes remains unclear. We characterized encoding in approximately 90,000 neurons across the mouse posterior cortex during a virtual navigation task with rule switching. The encoding of task and behavioral variables was highly distributed across cortical areas but differed in magnitude, resulting in three spatial gradients for visual cue, spatial position plus dynamics of choice formation, and locomotion, with peaks respectively in visual, retrosplenial, and parietal cortices. Surprisingly, the conjunctive encoding of these variables in single neurons was similar throughout the posterior cortex, creating high-dimensional representations in all areas instead of revealing computations specialized for each area. We propose that, for guiding navigation decisions, the posterior cortex operates in parallel rather than hierarchically, and collectively generates a state representation of the behavior and environment, with each area specialized in handling distinct information modalities.
Lu J, Behbahani AH, Hamburg L, et al. Transforming representations of movement from body- to world-centric space. Nature. 2022;601 (7891) :98-104.Abstract
When an animal moves through the world, its brain receives a stream of information about the body's translational velocity from motor commands and sensory feedback signals. These incoming signals are referenced to the body, but ultimately, they must be transformed into world-centric coordinates for navigation1,2. Here we show that this computation occurs in the fan-shaped body in the brain of Drosophila melanogaster. We identify two cell types, PFNd and PFNv3-5, that conjunctively encode translational velocity and heading as a fly walks. In these cells, velocity signals are acquired from locomotor brain regions6 and are multiplied with heading signals from the compass system. PFNd neurons prefer forward-ipsilateral movement, whereas PFNv neurons prefer backward-contralateral movement, and perturbing PFNd neurons disrupts idiothetic path integration in walking flies7. Downstream, PFNd and PFNv neurons converge onto hΔB neurons, with a connectivity pattern that pools together heading and translation direction combinations corresponding to the same movement in world-centric space. This network motif effectively performs a rotation of the brain's representation of body-centric translational velocity according to the current heading direction. Consistent with our predictions, we observe that hΔB neurons form a representation of translational velocity in world-centric coordinates. By integrating this representation over time, it should be possible for the brain to form a working memory of the path travelled through the environment8-10.
2021
Yap E-L, Pettit NL, Davis CP, et al. Bidirectional perisomatic inhibitory plasticity of a Fos neuronal network. Nature. 2021;590 (7844) :115-121.Abstract
Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.
Lehnert BP, Santiago C, Huey EL, et al. Mechanoreceptor synapses in the brainstem shape the central representation of touch. Cell. 2021;184 (22) :5608-5621.e18.Abstract
Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.
Hamilos AE, Spedicato G, Hong Y, et al. Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. Elife. 2021;10.Abstract
Clues from human movement disorders have long suggested that the neurotransmitter dopamine plays a role in motor control, but how the endogenous dopaminergic system influences movement is unknown. Here, we examined the relationship between dopaminergic signaling and the timing of reward-related movements in mice. Animals were trained to initiate licking after a self-timed interval following a start-timing cue; reward was delivered in response to movements initiated after a criterion time. The movement time was variable from trial-to-trial, as expected from previous studies. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time on single trials. Steeply rising signals preceded early lick-initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movements. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of movement initiation, whereas inhibition caused late-shifting, as if modulating the probability of movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation on single trials. We propose that ramping dopaminergic signals, likely encoding dynamic reward expectation, can modulate the decision of when to move.
Bakshi S, Leoncini E, Baker C, et al. Tracking bacterial lineages in complex and dynamic environments with applications for growth control and persistence. Nat Microbiol. 2021;6 (6) :783-791.Abstract
As bacteria transition from exponential to stationary phase, they change substantially in size, morphology, growth and expression profiles. These responses also vary between individual cells, but it has proved difficult to track cell lineages along the growth curve to determine the progression of events or correlations between how individual cells enter and exit dormancy. Here, we developed a platform for tracking more than 105 parallel cell lineages in dense and changing cultures, independently validating that the imaged cells closely track batch populations. Initial applications show that for both Escherichia coli and Bacillus subtilis, growth changes from an 'adder' mode in exponential phase to mixed 'adder-timers' entering stationary phase, and then a near-perfect 'sizer' upon exit-creating broadly distributed cell sizes in stationary phase but rapidly returning to narrowly distributed sizes upon exit. Furthermore, cells that undergo more divisions when entering stationary phase suffer reduced survival after long periods of dormancy but are the only cells observed that persist following antibiotic treatment.
2020
Qian J, Lu Z-X, Mancuso CP, et al. Barcoded microbial system for high-resolution object provenance. Science. 2020;368 (6495) :1135-1140.Abstract
Determining where an object has been is a fundamental challenge for human health, commerce, and food safety. Location-specific microbes in principle offer a cheap and sensitive way to determine object provenance. We created a synthetic, scalable microbial spore system that identifies object provenance in under 1 hour at meter-scale resolution and near single-spore sensitivity and can be safely introduced into and recovered from the environment. This system solves the key challenges in object provenance: persistence in the environment, scalability, rapid and facile decoding, and biocontainment. Our system is compatible with SHERLOCK, a Cas13a RNA-guided nucleic acid detection assay, facilitating its implementation in a wide range of applications.
Chow BW, Nuñez V, Kaplan L, et al. Caveolae in CNS arterioles mediate neurovascular coupling. Nature. 2020;579 (7797) :106-110.Abstract
Proper brain function depends on neurovascular coupling: neural activity rapidly increases local blood flow to meet moment-to-moment changes in regional brain energy demand1. Neurovascular coupling is the basis for functional brain imaging2, and impaired neurovascular coupling is implicated in neurodegeneration1. The underlying molecular and cellular mechanisms of neurovascular coupling remain poorly understood. The conventional view is that neurons or astrocytes release vasodilatory factors that act directly on smooth muscle cells (SMCs) to induce arterial dilation and increase local blood flow1. Here, using two-photon microscopy to image neural activity and vascular dynamics simultaneously in the barrel cortex of awake mice under whisker stimulation, we found that arteriolar endothelial cells (aECs) have an active role in mediating neurovascular coupling. We found that aECs, unlike other vascular segments of endothelial cells in the central nervous system, have abundant caveolae. Acute genetic perturbations that eliminated caveolae in aECs, but not in neighbouring SMCs, impaired neurovascular coupling. Notably, caveolae function in aECs is independent of the endothelial NO synthase (eNOS)-mediated NO pathway. Ablation of both caveolae and eNOS completely abolished neurovascular coupling, whereas the single mutants exhibited partial impairment, revealing that the caveolae-mediated pathway in aECs is a major contributor to neurovascular coupling. Our findings indicate that vasodilation is largely mediated by endothelial cells that actively relay signals from the central nervous system to SMCs via a caveolae-dependent pathway.
Malka R, Guarin DL, Mohan S, et al. Implantable wireless device for study of entrapment neuropathy. J Neurosci Methods. 2020;329 :108461.Abstract
BACKGROUND: Disease processes causing increased neural compartment pressure may induce transient or permanent neural dysfunction. Surgical decompression can prevent and reverse such nerve damage. Owing to insufficient evidence from controlled studies, the efficacy and optimal timing of decompression surgery remains poorly characterized for several entrapment syndromes. NEW METHOD: We describe the design, manufacture, and validation of a device for study of entrapment neuropathy in a small animal model. This device applies graded extrinsic pressure to a peripheral nerve and wirelessly transmits applied pressure levels in real-time. We implanted the device in rats applying low (under 100 mmHg), intermediate (200-300 mmHg) and high (above 300 mmHg) pressures to induce entrapment neuropathy of the facial nerve to mimic Bell's palsy. Facial nerve function was quantitatively assessed by tracking whisker displacements before, during, and after compression. RESULTS: At low pressure, no functional loss was observed. At intermediate pressure, partial functional loss developed with return of normal function several days after decompression. High pressure demonstrated complete functional loss with incomplete recovery following decompression. Histology demonstrated uninjured, Sunderland grade III, and Sunderland grade V injury in nerves exposed to low, medium, and high pressure, respectively. COMPARISON WITH EXISTING METHODS: Existing animal models of entrapment neuropathy are limited by inability to measure and titrate applied pressure over time. CONCLUSIONS: Described is a miniaturized, wireless, fully implantable device for study of entrapment neuropathy in a murine model, which may be broadly employed to induce various degrees of neural dysfunction and functional recovery in live animal models.

Pages